If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+a^2=315^2
We move all terms to the left:
a^2+a^2-(315^2)=0
We add all the numbers together, and all the variables
2a^2-99225=0
a = 2; b = 0; c = -99225;
Δ = b2-4ac
Δ = 02-4·2·(-99225)
Δ = 793800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{793800}=\sqrt{396900*2}=\sqrt{396900}*\sqrt{2}=630\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-630\sqrt{2}}{2*2}=\frac{0-630\sqrt{2}}{4} =-\frac{630\sqrt{2}}{4} =-\frac{315\sqrt{2}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+630\sqrt{2}}{2*2}=\frac{0+630\sqrt{2}}{4} =\frac{630\sqrt{2}}{4} =\frac{315\sqrt{2}}{2} $
| 6x-(5x+9)=3×-21 | | -9-8f=-9f-5 | | 20+8(4-6x)=100 | | 8-2(-7x-6)=2 | | 2x-3(3x-9)=4(3x-8)+8x | | 2/5×1/3x=3 | | 2+89x=180 | | 12=n5 | | 1+3x+4x=9x-1-x | | (x÷8)+23+4=36 | | 2/5×-1/3x=3 | | 5x-10=20+5x | | X+.06x=72379 | | 2x49x+40x=180 | | 34=2n+8 | | 1/5x-4=x-20/5 | | 9x+7=20x | | 15+24+2x=145x=392 | | 6y=30+y | | 1/4x=20+x | | 18x+2=-4+19x | | 4x+5=5x+4/4 | | -6(-6x+3)-3x=1 | | 6-3x=-3(x+4) | | 2/4-6x/10=-22/4 | | 2/3-4x/6=-12/3 | | 3x-1.5=6x+18 | | 7^5x-9=117649 | | u+5u=42 | | -1/2(-1/3x+2)=5 | | -9+9x=6+8x+4x | | 55=-2(3x+5)-7(-8x+5) |